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Question A (4 points). Soit A une matrice symétrique.
(a) (1 point) Que dit le Théorème spectral ? Dire explicitement ce que cela signifie pour une

matrice d’être orthodiagonalisable.

J’aimerais voir ici au moins : une matrice est orthodiagonalisable (ou de manière équivalente :
diagonalisable par un changement de base orthonormé) si et seulement elle est symétrique, ce
qui signifie explicitement qu’il existe une matrice U orthogonale telle que UAUT est diagonale.
Le théorème spectral dit encore que toutes les valeurs propres sont réelles et que deux espaces
propres distincts sont orthogonaux.

(b) (3 points) Soit λ et µ deux valeurs propres distinctes de la matrice A. Montrer que les espaces
propres Eλ et Eµ sont orthogonaux.

Soit v un vecteur propre de Eλ et w un vecteur propre de Eµ. On doit montrer que v ⊥ w.
Pour cela on calcule le produit scalaire

λv · w = Av · w car v ∈ Eλ
= (Av)Tw par définition du produit scalaire
= vTATw par une propriété de la transposition
= vTAw car A est symétrique
= vT (µw) car w ∈ Eµ
= v · (µw) par définition du produit scalaire
= µv · w

Ainsi λv ·w = µv ·w ou encore (λ− µ)v ·w = 0 Comme λ 6= µ par hypothèse on conclut que
v · w = 0, les deux vecteurs sont orthogonaux.

Question B (14 points). Dans cet exercice W est le sous-espace de R4 engendré par les vecteurs
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(a) (3 points) Construire une base orthonormée de W .

Puisque les deux vecteurs proposés ne sont pas orthogonaux, on Gram-Schmidte.

Pour calculer la projection orthogonale de v =
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on a besoin de
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— la norme au carré de
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— la formule u · v
||u||2
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 pour la projection orthogonale

— la formule de Gram-Schmidt v − projuv =


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
Pour terminer il faut normaliser ces vecteurs (1 point) pour obtenir par exemple la base
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En Gram-Schmidtant dans l’autre sens on trouverait
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(b) (1 point) Calculer la matrice B = ATA =


1 1
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
(

1 1 0 1
1 0 1 1

)
=


2 1 1 2
1 1 0 1
1 0 1 1
2 1 1 2

.

(c) (3 points) Calculer le polynôme caractéristique et les valeurs propres de la matrice B = ATA.

On calcule cB(t) = det(B − tI4) =

∣∣∣∣∣∣∣∣∣
2− t 1 1 2

1 1− t 0 1
1 0 1− t 1
2 1 1 2− t

∣∣∣∣∣∣∣∣∣.
On effectue maintenant des opérations élémentaires sur les lignes ou les colonnes, par exemple
C1 - C4 et C2 -C3 :

cB(t) =

∣∣∣∣∣∣∣∣∣
−t 0 1 2
0 1− t 0 1
0 t− 1 1− t 1
t 0 1 2− t

∣∣∣∣∣∣∣∣∣ = t(t− 1)

∣∣∣∣∣∣∣∣∣
−1 0 1 2
0 −1 0 1
0 1 1− t 1
1 0 1 2− t

∣∣∣∣∣∣∣∣∣



On a utilisé la linéarité du déterminant comme fonction d’une colonne et on continue avec de
nouvelles opérations, par exemple L4 + L1 et L3 + L2

cB(t) = t(t− 1)

∣∣∣∣∣∣∣∣∣
−1 0 1 2
0 −1 0 1
0 0 1− t 2
0 0 2 4− t

∣∣∣∣∣∣∣∣∣ = t(t− 1)(−1)2
∣∣∣∣∣1− t 2

2 4− t

∣∣∣∣∣
On a enfin développé selon la première colonne, puis la deuxième. On termine le calcul

cB(t) = t(t− 1)(t2 − 5t+ 4− 4) = t2(t− 1)(t− 5)

(d) (3 points) Identifier les espaces propres de B sachant que le vecteur w =


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 est un vecteur

propre de B, et en utilisant la partie (a).

1. On sait que E0 = KerB est de dimension 2, on devine donc qu’il s’agit de W . De fait, deux
opérations sur les lignes permettent de voir que

E0 = Ker


2 1 1 2
1 1 0 1
1 0 1 1
2 1 1 2

 = Ker
(

1 0 1 1
0 1 −1 0

)
= W

Puisqu’un vecteur propre nous est donné, calculons Bw = 5w (0.5 point) si bien que E5 =
Vect{w}. Enfin il faut calculer, à l’aide de quelques opérations élémentaires pour échelonner
et réduire :

E1 = Ker


1 1 1 2
1 0 0 1
1 0 0 1
2 1 1 1

 = Ker

1 0 0 1
0 1 1 1
0 1 1 −1

 = Ker

1 0 0 0
0 1 1 0
0 0 0 1



Ainsi E1 = Vect
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(e) (1 point) Calculer une base orthonormée de vecteurs propres de B.

On a déjà une base orthonormée de W , il ne reste plus qu’à normaliser les vecteurs qui
engendrent E1 et E5. Ainsi
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(f) (3 points) Calculer les matrices U , V et Σ de la décomposition en valeurs singulières UΣV T

de la matrice A.

La matrice V est simplement formée en plaçant la base orthonormée ci-dessus dans les colonnes :

V =
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La matrice Σ a la même taille que A et on place les valeurs singulières dans la diagonale :

Σ =
(√

5 0 0 0
0 1 0 0

)

Enfin pour calculer U on doit calculer

Au =
(

1 1 0 1
1 0 1 1

)
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si bien que la première colonne de U est
(√

2/2√
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)
(0.5 point). De même pour E1 :
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si bien que la deuxième colonne de U est
(
−
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)
(0.5 point). Au final
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